

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

4730

Mechanics 3

Tuesday

10 JANUARY 2006

Afternoon

1 hour 30 minutes

Additional materials: 8 page answer booklet Graph paper List of Formulae (MF1)

TIME

1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- The acceleration due to gravity is denoted by $g \, \text{m s}^{-2}$. Unless otherwise instructed, when a numerical value is needed, use g = 9.8.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

A particle P of mass 0.4 kg moving in a straight line has speed 8.7 m s⁻¹. An impulse applied to P deflects it through 45° and reduces its speed to 5.4 m s⁻¹ (see diagram). Calculate the magnitude and direction of the impulse exerted on P.

- O is a fixed point on a horizontal straight line. A particle P of mass $0.5 \,\mathrm{kg}$ is released from rest at O. At time t seconds after release the only force acting on P has magnitude $(1 + kt^2) \,\mathrm{N}$ and acts horizontally and away from O along the line, where k is a positive constant.
 - (i) Find the speed of P in terms of k and t. [3]
 - (ii) Given that P is 2 m from O when t = 1, find the value of k and the time taken by P to travel 20 m from O.
- 3 A light elastic string has natural length 3 m. One end is attached to a fixed point O and the other end is attached to a particle of mass 1.6 kg. The particle is released from rest in a position 5 m vertically below O. Air resistance may be neglected.
 - (i) Given that in the subsequent motion the particle just reaches O, show that the modulus of elasticity of the string is 117.6 N. [4]
 - (ii) Calculate the speed of the particle when it is 4.5 m below O. [4]

4

Two uniform smooth spheres A and B, of equal radius, have masses 5 kg and 2 kg respectively. They are moving on a horizontal surface when they collide. Immediately before the collision, A has speed $4 \,\mathrm{m \, s^{-1}}$ and is moving perpendicular to the line of centres, and B has speed $4 \,\mathrm{m \, s^{-1}}$ along the line of centres (see diagram). The coefficient of restitution is 0.75. Find the speed and direction of motion of each sphere immediately after the collision.

6

Two uniform rods AB and BC have weights 64 N and 40 N respectively. The rods are freely jointed to each other at B. The rod AB is freely jointed to a fixed point on horizontal ground at A and the rod BC rests against a vertical wall at C. The rod BC is 1.8 m long and is horizontal. A particle of weight 9 N is attached to the rod BC at the point 0.4 m from C. The point A is 1.2 m below the level of BC and 3.8 m from the wall (see diagram). The system is in equilibrium.

- (i) Show that the magnitude of the frictional force at C is 27 N. [4]
- (ii) Calculate the horizontal and vertical components of the force exerted on AB at B. [5]
- (iii) Given that friction is limiting at C, find the coefficient of friction between the rod BC and the wall. [2]

One end of a light inextensible string of length $0.5 \,\mathrm{m}$ is attached to a fixed point O. A particle P of mass $0.3 \,\mathrm{kg}$ is attached to the other end of the string. With the string taut and at an angle of 60° to the upward vertical, P is projected with speed $2 \,\mathrm{m\,s^{-1}}$ (see diagram). P begins to move without air resistance in a vertical circle with centre O. When the string makes an angle θ with the upward vertical, the speed of P is $v \,\mathrm{m\,s^{-1}}$.

(i) Show that
$$v^2 = 8.9 - 9.8 \cos \theta$$
. [4]

- (ii) Find the tension in the string in terms of θ . [4]
- (iii) P does not move in a complete circle. Calculate the angle through which OP turns before P leaves the circular path. [4]

[Turn over

As shown in the diagram, A and B are fixed points on a smooth horizontal table, where AB = 3 m. A particle Q of mass 1.2 kg is attached to A by a light elastic string of natural length 1 m and modulus of elasticity 180 N. Q is attached to B by a light elastic string of natural length 1.2 m and modulus of elasticity 360 N.

(i) Verify that when
$$Q$$
 is in equilibrium $BQ = 1.5$ m. [4]

Q is projected towards B from the equilibrium position with speed u m s⁻¹. Subsequently Q oscillates with simple harmonic motion.

(iii) Show that
$$u \le 6$$
. [4]

(iv) Given that u = 6, find the time taken for Q to move from the equilibrium position to a position 1.3 m from A for the first time. [3]

1	$\pm (5.4\cos 45^{\circ} - 8.7)$	Ml		For attempting to find Δv in i dir'n
		M1		For using $I = m(\Delta v)$ in i direction
	$I\cos\theta = \pm 0.4(5.4\cos 45^{\circ} - 8.7)$	A 1		(= ∓ 1.953)
Ì	$I\sin\theta = 0.4x5.4\sin45$	B 1		(= 1.527)
	$I = \sqrt{(1.527^2 + 1.953^2)} \text{ or } \theta = \tan^{-1}[1.527/(-1.953)]$	M1		For using Pythagoras or trig.
	Magnitude is 2.48 kgms ⁻¹	A 1		
	Direction is 142° to original dir'n.	A 1	[7]	Accept $\theta = 38.0^{\circ}$ with θ shown appropriately
OR		M1		For using Impulse = mass x Δv
	$I = 0.4 (5.4^2 + 8.7^2 -$	Ml		For appropriate use of cosine rule
	2x5.4x8.7cos45°) 1/2	A1		
İ	Magnitude is 2.48 kgms ⁻¹	A 1		
	-	M1		For appropriate use of sine rule
	$\sin \theta / 5.4 = \sin 45^{\circ} / 6.1976$	A 1		
	$\theta = 38.0^{\circ}$	A 1		

2	(i)	M1		For correct use of Newton's 2 nd law
	$0.5 dv/dt = 1 + kt^2$	Al		
	$v = 2t + 2kt^3/3$	A1	[3]	
				SR(max 1/3) for omission of mass but otherwise correct $v = t + kt^3/3$
	(ii) $x = t^2 + kt^4/6$	Ml		For integration w.r.t. t
	2 = 1 + k/6	M1		For substitution and attempting to solve for k
	k = 6	A1		
		M1		For attempting to solve quadratic in t ² for t
	t = 2	<u>A</u> 1	[5]	With no extra solutions

3	(i)	M1	For use of EE formula
	$EE = \lambda x (5-3)^2 / (2 x 3)$	A 1	
	$2 \lambda / 3 = 1.6 \times 9.8 \times 5$	M1	For equating EE and PE
1	$\lambda = 117.6 \text{ N}$	A1 [4]	AG
	(ii)	M1	For use of conservation of energy
	$0.5 \times 1.6 \text{v}^2 = 1.6 \times 9.8 \times 4.5$	A2,1,0	-1 each error
ŀ	-		
	$117.6 \times 1.5^2 / (2 \times 3)$ v = 5.75 ms ⁻¹		
	$v = 5.75 \text{ ms}^{-1}$	A1 [4]	

4	Perp. vel. of A after impact = 4	B1		
	•	M1		For using cons'n of m'm'tum // l.o.c
	[5x0] - 2x4 = 5a + 2b	A 1		
		M 1		Using N.E.L. // l.o.c.
	$0.75 \times 4 = b-a$	A 1		
		M1		For solving sim. equ.
	Speed of B is 1ms ⁻¹ ; direction			
	//l.o.c. and to the right	A 1		
	$v_A = \sqrt{(4^2 + (-2)^2)}$	MI		For method of finding the speed of A
	tan(angle) = 4/2	Ml		For method of finding the direction of A
	Speed of A is 4.47 ms ⁻¹ ;			_
	direction is 63.4° to l.o.c. and to	A 1	[10	
	the left]	

5	(i)	M1	For any moment equ. that includes F and all other relevant forces
	1.8F = 0.9x40 + 1.4x9	A2,1,0	-1 each error
	Magnitude is 27 N	A1 [4	4] AG
	(ii) Vertical comp. is 22 N		
	downwards	B 1	
		M1	For any moment equ. that includes X and all other relevant forces
	1.2X = (40+9-27)x(3.8-1.8) + 64	A2,1,0 f	t -1 each error.
	x1(1.2X = 44 + 64)		ft wrong vert. comp.
	Horizontal comp. is 90 N to the left	A1 [5	5]
	(iii) $\mu = 27/[90]$	M1	For use of $\mu = F/R$
	Coefficient of friction is 0.3	Al [2 ft	2] ft wrong answer in (ii)

6	(i)	M1		For use of conservation of energy
	$0.5 \times 0.3 \text{ v}^2 - 0.5 \times 0.3 \times 2^2 =$			
	$0.3x9.8x0.5\cos 60 -$			
		A2,1,	0	-1 each error
	$0.3x9.8x0.5\cos\theta$			
	$\mathbf{v}^2 = 8.9 - 9.8\cos\theta$	A 1	[4]	AG
	(ii)	M1		For using Newton's 2 nd law radially
	$T + 0.3x9.8\cos\theta = 0.3v^2/0.5$	Al		
	$T + 2.94\cos\theta =$	M 1		For correct substitution for v ²
	$0.6(8.9 - 9.8\cos\theta)$			
	Tension is $(5.34 - 8.82\cos\theta)$ N	A1	[4]	Accept any correct form
	(iii)	M1		For using $T = 0$
	Basic value $\theta = 52.7^{\circ}$	A1 ft		ft any T of the form a - bcos θ
	Angle = (360-52.7) - 60	M 1		
	Angle turned through is 247°	A 1	[4]	

7	(i)	M1		For using $T = \lambda e/L$ once
	For 180e/1 or 360(0.8-e)/1.2 or			
	$T_A = 180 \times 0.5/1 \text{ or}$			
	$T_B = 360 x$	A 1		
	0.3/1.2			
	$480e = 240 \text{ or } T_A = 90, T_B = 90$	M1		For using $T_A(e) = T_B(e)$ or attempting to show $T_A = T_B$ when BQ = 1.5
	$BQ = 1 + 0.5 = 1.5 \text{ m or } T_A = T_B$	A1	[4]	AG
	(ii) $T_B = 360(0.3 - x)/1.2$	B1		
	$T_A = 180(0.5 + x)$	B 1		
	$1.2d^2x/dt^2 =$	M1		For using Newton's 2 nd
	300(0.3-x) - 180(0.5+x)			law
	$d^2x/dt^2 = -400x$	A1		
-	Period is $2\pi / \sqrt{[400]} = 0.314 \text{ s}$	A 1	[5]	AG
	(iii)	Ml		For using $T_B = 0$
1	Max amplitude = $1.5 - 1.2 = 0.3$	A1		
	m			•
	amplitude = $u/\sqrt{400}$ or	M1		For using Amp. = u/ω or 'energy at
	$180 \times 0.5^2 / (2 \times 1) +$			equil. pos'n = energy at max. displ.'
	$360 \times 0.3^2 / (2 \times 1.2)$			
Ĭ	$+\frac{1}{2}1.2u_{\text{max}}^{2} =$			
1	$180 \times 0.8^2 / (2 \times 1)$			
	Maximum value of u is 6	A1	[4]	AG
	(iv) $-0.2 = 0.3\sin 20t$	M1		For relevant trig. equation
	20t = 0.7297 + 3.142	M1		For method of obtaining relevant solution
	Time taken is 0.194s	A 1	[3]	